Posted: December 27th, 2022 | Author: Domingo | Filed under: Artificial Intelligence, Natural Language Processing | Tags: AI, artificial intelligence, Large Language Models, LLMs, natural language processing, NLP | Comments Off on Large Language Models (LLMs): an Ontological Leap beyond AI
More than the quasi-human interaction and the practically infinite use cases that could be covered with it, OpenAI’s ChatGPT has provided an ontological jolt of a depth that transcends the realm of AI itself.
Large language models (LLMs), such as GPT-3, YUAN 1.0, BERT, LaMDA, Wordcraft, HyperCLOVA, Megatron-Turing Natural Language Generation, or PanGu-Alpha represent a major advance in artificial intelligence and, in particular, toward the goal of human-like artificial general intelligence. LLMs have been called foundational models; i.e., the infrastructure that made LLMs possible –the combination of enormously large data sets, pre-trained transformer models, and the requirement of significant computing power– is likely to be the basis for the first general purpose AI technologies.
In May 2020, OpenAI released GPT-3 (Generative Pre-trained Transformer 3), an artificial intelligence system based on deep learning techniques that can generate text. This analysis is done by a neural network, each layer of which analyzes a different aspect of the samples it is provided with; e.g., meanings of words, relations of words, sentence structures, and so on. It assigns arbitrary numerical values to words and then, after analyzing large amounts of texts, calculates the likelihood that one particular word will follow another. Amongst other tasks, GPT-3 can write short stories, novels, reportages, scientific papers, code, and mathematical formulas. It can write in different styles and imitate the style of the text prompt. It can also answer content-based questions; i.e., it learns the content of texts and can articulate this content. And it can grant as well concise summaries of lengthy passages.
OpenAI and the likes endow machines with a structuralist equipment: a formal logical analysis of language as a system in order to let machines participate in language. GPT-3 and other transformer-based language models stand in direct continuity with the linguist Saussure’s work: language comes into view as a logical system to which the speaker is merely incidental. These LLMs give rise to a new concept of language, implicit in which is a new understanding of human and machine. OpenAI, Google, Facebook, or Microsoft effectively are indeed catalyzers, which are triggering a disruption in the old concepts we have been living by so far: a machine with linguistic capabilities is simply a revolution.
Nonetheless, critiques have appeared as well against LLMs. The usual one is that no matter how good they may appear to be at using words, they do not have true language; based on the primeval seminal trailblazing work from the philologist Zipf, criticism have stated they are just technical systems made up of data, statistics, and predictions.
According to the linguist Emily Bender, “a language model is a system for haphazardly stitching together sequences of linguistic forms it has observed in its vast training data, according to probabilistic information about how they combine, but without any reference to meaning: a stochastic parrot. Quite the opposite we, human beings, are intentional subjects who can make things into objects of thought by inventing and endowing meaning.“
Machine learning engineers in companies like OpenAI, Google, Facebook, or Microsoft have experimentally established a concept of language at the center of which does not need to be the human. According to this new concept, language is a system organized by an internal combinatorial logic that is independent from whomever speaks (human or machine). They have undermined one of the most deeply rooted axioms in Western philosophy: humans have what animals and machines do not have, language and logos.
Some data: monthly, on average, humans publish about seventy million posts on the content management platform WordPress. Humans produce about fifty-six billion words a month, or 1.8 billion words a day on this content management platform. GPT-3 -before its scintillating launch- was producing around 4.5 billion words a day, more than twice what humans on WordPress were doing collectively. And that is just GPT-3; there are other LLMs. We are exposed to a flood of non-human words. What will it mean to be surrounded by a multitude of non-human forms of intelligence? How can we relate to these astonishingly powerful content-generator LLMs? Do machines require semantics or even a will to communicate with us?
These are philosophical questions that cannot be just solved with an engineering approach. The scope is much wider and the stakes are extremely high. LLMs can, as well as master and learn our human languages, make us reflect and question ourselves about the nature of language, knowledge, and intelligence. Large language models illustrate, for the first time in the history of AI, that language understanding can be decoupled from all the sensorial and emotional features we, human beings, share with each other. Gradually, it seems we are entering eventually a new epoch in AI.
Posted: September 29th, 2020 | Author: Domingo | Filed under: Artificial Intelligence | Tags: AI, Everett, NLP, NLU, Zipf | Comments Off on Language is a Rum Thing
Zipf and His Word Frequency Distribution Law
Although it might sound surprising for some data scientists, the supposedly successful use of machine learning techniques to tackle the problem of natural language processing is based on the work of an US philologist called George Kingsley Zipf (1902-1950). Zipf analyzed the frequency distribution of certain terms and words in several languages, enunciating the law named after him in the 40’s of the past century. Ah, these crazy linguists!
One of the most puzzling facts about human language is also one of the most basic: Words occur according to a famously systematic frequency distribution such that there are few very high-frequency words that account for most of the tokens in text (e.g., “a,” “the,” “I,” etc.) and many low-frequency words (e.g., “accordion,” “catamaran,” “jeopardize”). What is striking is that the distribution is mathematically simple, roughly obeying a power law known as Zipf’s law: The rth most frequent word has a frequency f(r) that scales according to
f(r)∝1/rα
for α≈1 (Zipf, 1932, 1936)(1) In this equation, r is called the frequency rank of a word, and f(r) is its frequency in a natural corpus. Since the actual observed frequency will depend on the size of the corpus examined, this law states frequencies proportionally: The most frequent word (r = 1) has a frequency proportional to 1, the second most frequent word (r = 2) has a frequency proportional to 1/2α, the third most frequent word has a frequency proportional to 1/3α, and so forth.
From Zipf`s standpoint as well, the length of a word, far from being a random matter, is closely related to the frequency of its usage -the greater the frequency, the shorter the word. The more complex any speech-element is phonetically, the less frequent it occurs. In English the most frequent word in the sample will occur on the average once in approximately every 10 words; the second most frequent word once in every 20 words; the third most frequent word once in every 1,000 words; in brief, the distribution of words in English approximates with remarkable precision an harmonic series. Similarly, one finds in English (or Latin or Chinese) the following striking correlation. If the number of different words occurring once in a given sample is taken as x, the number of different words occurring twice, three times, four times, n times, in the same sample, is respectively 1/22, 1/32, 1/42… 1/n2 of x, up to, though not including, the few most frequently used words; that is, an unmistakable progression according to the inverse square is found, valid for over 95% of all the different words used in the sample.
This evidence points to the existence of a fundamental condition of equilibrium between the form and function of speech-habits, or speech-patterns, in any language. The impulse to preserve or restore this condition of equilibrium is the underlying cause of linguistic change. All speech-elements or language-patterns are impelled and directed in their behavior by a fundamental law of economy, in which there is the desire to maintain an equilibrium between form and behavior, always according to Zipf.
Nonetheless, if our languages are pure statistical distributions, what happens with meanings? Is there a multiplicative stochastic process at play? Absolutely not! We select and arrange our words according to their meanings with little or no conscious reference to the relative frequency of occurrence of those words in the stream of speech, yet we find that words thus selected and arranged have a frequency distribution of great orderliness which for a large portion of the curve seems to be constant for language in general. The question arises as to the nature of the meaning or meanings which leads automatically to this orderly frequency distribution.
A study of language is certainly incomplete which totally disregards all questions of meaning, emotion, and culture even though these refer to the most elusive of mental phenomena.
Daniel Everett and Language as a Cultural Tool
According to the linguist Everett, language is an artifact, a cultural tool, an instrument created by hominids to satisfy their social need of meaning and community (Everett, 2013)(2).
Linguists, psychologists, anthropologists, biologists, and philosophers tend to divide into those who believe that human biology is endowed with a language-dedicated genetic program and those who believe instead that human biology and the nature of the world provide general mechanisms, that allow us the flexibility to acquire a large array of general skills and abilities of which language is but one. The former often refers to a “language instinct” or a “universal grammar” (Chomsky dixit) shared by all humans. The latter talk about learning language as we learn many other skills, such as cooking, chess, or carpentry. The latter proposal takes seriously the idea that the function of language shapes its form. It recognizes the linguistic importance of the utilitarian forces radiating from the human necessity to communicate in order to survive. Language emerges as the nexus of our biological endowment and our environmental existence.
According to Chomsky meaning is secondary to grammar and all we need to understand of a formal grammar is that if we follow the rules and combine the symbols properly, then the sentences generated are grammatical -does it sound familiar to the ML approach to NLP?. Nonetheless, this is not accurate: beings with just a grammar would not have language. In fact, we know that meaning drives most, if not all the grammar. Meaning would have to appear at least as early in the evolution of language as grammar.
Forms in language vary radically and thus serve to remind us that humans are the only species with a communication system whose main characteristics is variation and not homogeneity. Humans do not merely produce fixed calls like vervet monkeys, they fit their messages to specific contexts and intentions.
People organize their words by related meanings -semantic fields-, by sound structure, by most common meanings, and so on. Even our verb structures are constrained by our cultures and what these cultures consider to be an “effable event”. For instance, the Pirahãs -an indigenous people of the Amazon Rainforest in Brazil- do not talk about the distant past or the far-off future because a cultural value of theirs is to talk only about the present or the short-term past or future.
Can grammatical structure itself be shaped by culture? Let’s consider another example: researchers claim there is no verb “to give” in Amele mainly for cultural reasons: giving is so basic to Amele culture the language manifests a tendency to allow the “experiential basicness” of giving to correspond to a “more basic kind of linguistic form” – that is zero. No verb is needed for this fundamental concept of Amele culture.
Language has been shaped in its very foundation by our socio-cultural needs. Languages fit their cultural niches and take on the properties required of them in their environments. That is one reason that languages change over time -they evolve to fit new cultural circumstances.
Our language is shaped to facilitate communication. There is very little evidence for arbitrariness in the design of grammars. People both overinterpret and under-interpret what they hear based on cultural expectations built into their communication patterns. We learn to predict, by means of what some researchers think is a sophisticated and unconscious computational computation of probabilities what a speaker is likely to say next once we learn that the relationships amongst words are contingent what the likehood of one word following another one is. Crucial for language acquisition is what we call the “interactional instinct”. This instinct is at innate drive amongst human infants to interact with conspecific caregivers. Babies and children learn from their parents’ faces what is in their parents’ minds and they adjust their own inner mental lives accordingly. Rather than learning algebraic procedures for combining symbols, children instead seem to learn linguistic categories and constructions as patterns of meaningful symbols.
All humans belong to culture and share values and knowledge with other members of their cultures. With the current approach an AI/NLP model will never be able to learn culture. Therefore, it can never learn a language stricto sensu, though it can learn lists of grammatical rules and lexical combinations.
Without culture, no background, without background no signs, without signs, no stories and no language.
Recapping, it seems NLP keeps on being the last challenge for AI practitioners and aficionados. Blending the mathematical-statistical and tbe symbolic approaches is paramount to find a solution to this conundrum. I’m positive the moment we succeed, we’ll be closer to strong AI… Still a long way ahead.
Die Grenzen Meiner Sprache sind die Grenzen meiner Welt. Ludwig Wittgenstein (1889 – 1951).
Bibliography:
(1) The Psycho-Biology of Language. An Introduction to Dynamic Philology. George Kingsley Zipf. 1936
Selected Studies of the Principle of Relative Frequency in Language. George Kingsley Zipf. 1932,
(2) Language. The Cultural Tool. Daniel Everett, 2013. Profile Books.
Posted: October 28th, 2015 | Author: Domingo | Filed under: Artificial Intelligence | Tags: Baroni, Bernardi, Chomsky, Erik T. Mueller, Georgetown-IBM experiment, IBM Watson, natural language processing, NLP, Zamparelli | Comments Off on Once upon a Time in 1954…
Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt
(The limits of my language are the limits of my world)
Ludwig Wittgenstein, Tractatus Logico-Philosophicus
… In a cold day of January it took place in Washington DC the Georgetown-IBM experiment, the first and most influential demonstration of automatic translation performed throughout the history. Developed jointly by the University of Georgetown and IBM, the experiment implied the automatic translation of more than 60 sentences from Russian into English. The sentences were chosen precisely; there was no syntactic analysis, which could manage to identify the sentence structure. The approach was mainly lexicographic, based on dictionaries in which a certain word had a link to some particular rules.
That episode was a success. Story has it that the level of euphoria amongst the researchers was such that it was stated that within three or five years the problem of the automatic translation would be solved… That was more than 60 years ago and the language problem –the comprehension and generation of messages by the machine- is still pending. Probably this is the last frontier which separates the human intelligence from the artificial intelligence.
Leer más »
Posted: October 27th, 2015 | Author: Domingo | Filed under: Artificial Intelligence | Tags: Baroni, Bernardi, Chomsky, Erik T. Mueller, Experimento Georgetown-IBM, natural language processing, Natural Language Processing with ThoughtTreasure, NLP, PLN, procesamiento de lenguaje natural, Zamparelli | Comments Off on Érase una vez en 1954…
Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt
(Los límites de mi lenguaje son los límites de mi mundo)
Ludwig Wittgenstein, Tractatus logico-philosophicus
… En un frío día de enero tenía lugar en Washington D.C. el experimento Georgetown-IBM, la primera y más influyente demostración de traducción automatizada de la historia. Desarrollado conjuntamente por la Universidad de Georgetown e IBM, el experimento implicaba la traducción automatizada de más de 60 oraciones del ruso al inglés. Las oraciones se escogieron de manera precisa; no había ningún análisis sintáctico que pudiera llegar a detectar la estructura de la oración. El enfoque fue eminentemente lexicográfico, basado en diccionarios en los que una palabra determinada tenía una conexión con unas reglas específicas.
Aquello fue un éxito y, cuenta la historia que, tal fue la euforia entre los investigadores, que se llegó a afirmar que en un plazo de entre tres y cinco años el problema de la traducción automatizada quedaría resuelto… Eso fue hace algo más de 60 años y el problema del lenguaje, de la comprensión y generación de mensajes por parte de una máquina, aún está sin resolver. Probablemente es la última barrera que separa a la inteligencia humana de la inteligencia artificial.
Leer más »